毕业论文
您现在的位置: 早期肺炎 >> 小儿早期肺炎 >> 正文 >> 正文

让AI加入战疫做影像科医生的好

来源:早期肺炎 时间:2025/5/22
中科白癜风医院微博 http://www.xuexily.com/m/
核酸检测准确率不高?CT影像靠人工鉴别需耗费大量时间精力?面对新冠疫情诊断的现实需求,复旦大学科研团队正在攻关的人工智能辅助诊断或许能够给出更好的选项。1月29日,由复旦大学副校长张志勇牵头,复旦大学计算机科学技术学院和大数据研究院联合上海市(复旦大学附属)公共卫生临床中心放射科,正式启动了-nCoV肺炎影像学AI智能辅助诊断相关研究工作。该研究旨在通过AI智能算法实现-nCoV肺炎与其他病毒性肺炎、细菌性肺炎的影像分类识别及病灶检测,帮助临床进行更高效的诊断。目前取得的应用数据显示,对新冠肺炎类型诊断的假阴性在7%左右(核酸检测假阴性高达30%-50%)。2月21日,辅助诊断设备入驻公共卫生临床中心,正在调试安装,将很快投入临床实战检验。模型设计有门道:从一个病例层影像中准确定位病灶区域新型冠状病毒引起的肺炎,与其他病毒性肺炎、细菌性肺炎在CT影像呈现上有诸多相似之处。三种肺炎都存在视觉相似的病灶(如磨玻璃影),目前临床发现可适当利用病灶在肺部空间的分布等更多差异信息进行区分。“影像科医生诊断一个病例要看层左右的影像,加上前后对比,最快也需要5-10分钟,而算法只需要几秒钟。”复旦大学计算机科学技术学院教授薛向阳介绍,与人工诊断相比,AI辅助算法的最大优势就在于读片速度,在秒级时间内就能帮助医生预发现病灶发生区域,从而大幅度缩短医生的读片时间,提高临床诊治的效率。如何让AI具备鉴别新冠肺炎的能力以投入这场战“疫”?这背后真正的“最强大脑”是算法模型。团队快速行动起来,利用当前最先进的深度学习算法,为肺部CT影像定制了一套深度神经网络模型,并以长期研究积累的经验与技巧,在CT影像标注数据较少的情况下,训练出性能比较好的模型。“现阶段医生需要在大量的影像数据中快速诊断出新冠肺炎的病例,此外还需要诊断出病灶分布的位置、大小等来评估严重程度。”薛向阳介绍,针对临床的现实需求,团队将设计目标定位于“肺炎分类鉴别”和“关键病灶检测”两大功能,前者是为区别健康状态、新冠肺炎、其他病毒性肺炎、细菌性肺炎,后者则为找到并分隔出磨玻璃影等病灶区域。在对新冠肺炎、其他病毒性、细菌性肺炎和正常人的CT影像数据进行收集、整理和归类的基础上,团队设计诊断算法模型,让机器利用模型进行训练,学习不同类型肺炎在CT影像表现上的不同特征,最终具备智能辅助诊断的能力,成为临床医生的得力助手。“在这一过程中,需突破小样本学习、小目标检测等多个技术难题。”薛向阳说。“小样本学习”即在较少训练数据样本的条件下进行机器学习。在疫情发生前期,能够获取的新冠肺炎影像数据相对较少,且由于一线影像医生任务繁重,无法获得大量的专家标注,因此需要算法在较少的样本条件下“自学成才”。为此,团队采用基于自迁移学习的半监督学习等技巧,使算法具备了一定的“小样本学习”能力,在不增加医生标注工作量的情况下较好地提高了算法模型的普适性。而由于CT影像切片中的病灶区域有大有小,且往往大中小病灶区域面积悬殊,如何使算法能同时检测大、中、小各个目标是另一大难题。团队利用神经网络的层次性特点与病灶区域的大小进行对应,“网络的底层

转载请注明:http://www.soyingyong.net/xezqfy/11629.html

  • 上一篇文章:
  • 下一篇文章: 没有了